Engineering

FUEL CELL FUNDAMENTALS

Third Edition

RYAN O’HAYRE Department of Metallurgical and Materials Engineering Colorado School of Mines [PhD, Materials Science and Engineering, Stanford University]

SUK-WON CHA School of Mechanical and Aerospace Engineering Seoul National University [PhD, Mechanical Engineering, Stanford University]

WHITNEY G. COLELLA The G.W.C. Whiting School of Engineering, and The Energy, Environment, Sustainability and Health Institute The Johns Hopkins University Gaia Energy Research Institute [Doctorate, Engineering Science, The University of Oxford]

FRITZ B. PRINZ R.H. Adams Professor of Engineering Departments of Mechanical Engineering and Material Science and Engineering Stanford University

This book is printed on acid-free paper. ♾

Copyright © 2016 by John Wiley & Sons, Inc. All rights reserved. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with the respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor the author shall be liable for damages arising herefrom.

For general information about our other products and services, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is not included in the version you purchased, you may download this material at http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Cataloging-in-Publication Data is available:

ISBN 9781119113805 (Cloth) ISBN 9781119114208 (ePDF) ISBN 9781119114154 (ePub)

Cover Design: Wiley Cover Illustrations: Ryan O’Hayre Cover Image: Glacial abstract shapes © ppart/iStockphoto

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

To the parents who nurtured us.

To the teachers who inspired us.

CONTENTS

PREFACE xi

ACKNOWLEDGMENTS xiii

NOMENCLATURE xvii

I FUEL CELL PRINCIPLES

1 Introduction 3

1.1 What Is a Fuel Cell? / 3 1.2 A Simple Fuel Cell / 6 1.3 Fuel Cell Advantages / 8 1.4 Fuel Cell Disadvantages / 11 1.5 Fuel Cell Types / 12 1.6 Basic Fuel Cell Operation / 14 1.7 Fuel Cell Performance / 18 1.8 Characterization and Modeling / 20 1.9 Fuel Cell Technology / 21 1.10 Fuel Cells and the Environment / 21 1.11 Chapter Summary / 22

Chapter Exercises / 23

v

vi CONTENTS

2 Fuel Cell Thermodynamics 25

2.1 Thermodynamics Review / 25

2.2 Heat Potential of a Fuel: Enthalpy of Reaction / 34

2.3 Work Potential of a Fuel: Gibbs Free Energy / 37

2.4 Predicting Reversible Voltage of a Fuel Cell under Non-Standard-State Conditions / 47

2.5 Fuel Cell Efficiency / 60

2.6 Thermal and Mass Balances in Fuel Cells / 65

2.7 Thermodynamics of Reversible Fuel Cells / 67

2.8 Chapter Summary / 71

Chapter Exercises / 72

3 Fuel Cell Reaction Kinetics 77

3.1 Introduction to Electrode Kinetics / 77

3.2 Why Charge Transfer Reactions Have an Activation Energy / 82

3.3 Activation Energy Determines Reaction Rate / 84

3.4 Calculating Net Rate of a Reaction / 85

3.5 Rate of Reaction at Equilibrium: Exchange Current Density / 86

3.6 Potential of a Reaction at Equilibrium: Galvani Potential / 87

3.7 Potential and Rate: Butler–Volmer Equation / 89

3.8 Exchange Currents and Electrocatalysis: How to Improve Kinetic Performance / 94

3.9 Simplified Activation Kinetics: Tafel Equation / 97

3.10 Different Fuel Cell Reactions Produce Different Kinetics / 100

3.11 Catalyst–Electrode Design / 103

3.12 Quantum Mechanics: Framework for Understanding Catalysis in Fuel Cells / 104

3.13 The Sabatier Principle for Catalyst Selection / 107

3.14 Connecting the Butler–Volmer and Nernst Equations (Optional) / 108

3.15 Chapter Summary / 112

Chapter Exercises / 113

4 Fuel Cell Charge Transport 117

4.1 Charges Move in Response to Forces / 117

4.2 Charge Transport Results in a Voltage Loss / 121

4.3 Characteristics of Fuel Cell Charge Transport Resistance / 124

4.4 Physical Meaning of Conductivity / 128

4.5 Review of Fuel Cell Electrolyte Classes / 132

CONTENTS vii

4.6 More on Diffusivity and Conductivity (Optional) / 153

4.7 Why Electrical Driving Forces Dominate Charge Transport (Optional) / 160

4.8 Quantum Mechanics–Based Simulation of Ion Conduction in Oxide Electrolytes (Optional) / 161

4.9 Chapter Summary / 163

Chapter Exercises / 164

5 Fuel Cell Mass Transport 167

5.1 Transport in Electrode versus Flow Structure / 168

5.2 Transport in Electrode: Diffusive Transport / 170

5.3 Transport in Flow Structures: Convective Transport / 183

5.4 Chapter Summary / 199

Chapter Exercises / 200

6 Fuel Cell Modeling 203

6.1 Putting It All Together: A Basic Fuel Cell Model / 203

6.2 A 1D Fuel Cell Model / 206

6.3 Fuel Cell Models Based on Computational Fluid Dynamics (Optional) / 227

6.4 Chapter Summary / 230

Chapter Exercises / 231

7 Fuel Cell Characterization 237

7.1 What Do We Want to Characterize? / 238

7.2 Overview of Characterization Techniques / 239

7.3 In Situ Electrochemical Characterization Techniques / 240

7.4 Ex Situ Characterization Techniques / 265

7.5 Chapter Summary / 268

Chapter Exercises / 269

II FUEL CELL TECHNOLOGY

8 Overview of Fuel Cell Types 273

8.1 Introduction / 273

8.2 Phosphoric Acid Fuel Cell / 274

8.3 Polymer Electrolyte Membrane Fuel Cell / 275

8.4 Alkaline Fuel Cell / 278

8.5 Molten Carbonate Fuel Cell / 280

viii CONTENTS

8.6 Solid-Oxide Fuel Cell / 282

8.7 Other Fuel Cells / 284

8.8 Summary Comparison / 298

8.9 Chapter Summary / 299

Chapter Exercises / 301

9 PEMFC and SOFC Materials 303

9.1 PEMFC Electrolyte Materials / 304

9.2 PEMFC Electrode/Catalyst Materials / 308

9.3 SOFC Electrolyte Materials / 317

9.4 SOFC Electrode/Catalyst Materials / 326

9.5 Material Stability, Durability, and Lifetime / 336

9.6 Chapter Summary / 340

Chapter Exercises / 342

10 Overview of Fuel Cell Systems 347

10.1 Fuel Cell Subsystem / 348

10.2 Thermal Management Subsystem / 353

10.3 Fuel Delivery/Processing Subsystem / 357

10.4 Power Electronics Subsystem / 364

10.5 Case Study of Fuel Cell System Design: Stationary Combined Heat and Power Systems / 369

10.6 Case Study of Fuel Cell System Design: Sizing a Portable Fuel Cell / 383

10.7 Chapter Summary / 387

Chapter Exercises / 389

11 Fuel Processing Subsystem Design 393

11.1 Fuel Reforming Overview / 394

11.2 Water Gas Shift Reactors / 409

11.3 Carbon Monoxide Clean-Up / 411

11.4 Reformer and Processor Efficiency Losses / 414

11.5 Reactor Design for Fuel Reformers and Processors / 416

11.6 Chapter Summary / 417

Chapter Exercises / 419

CONTENTS ix

12 Thermal Management Subsystem Design 423

12.1 Overview of Pinch Point Analysis Steps / 424

12.2 Chapter Summary / 440

Chapter Exercises / 441

13 Fuel Cell System Design 447

13.1 Fuel Cell Design Via Computational Fluid Dynamics / 447

13.2 Fuel Cell System Design: A Case Study / 462

13.3 Chapter Summary / 476

Chapter Exercises / 477

14 Environmental Impact of Fuel Cells 481

14.1 Life Cycle Assessment / 481

14.2 Important Emissions for LCA / 490

14.3 Emissions Related to Global Warming / 490

14.4 Emissions Related to Air Pollution / 502

14.5 Analyzing Entire Scenarios with LCA / 507

14.6 Chapter Summary / 510

Chapter Exercises / 511

A Constants and Conversions 517

B Thermodynamic Data 519

C Standard Electrode Potentials at 25∘C 529

D Quantum Mechanics 531

D.1 Atomic Orbitals / 533

D.2 Postulates of Quantum Mechanics / 534

D.3 One-Dimensional Electron Gas / 536

D.4 Analogy to Column Buckling / 537

D.5 Hydrogen Atom / 538

D.6 Multielectron Systems / 540

D.7 Density Functional Theory / 540

x CONTENTS

E Periodic Table of the Elements 543

F Suggested Further Reading 545

G Important Equations 547

H Answers to Selected Chapter Exercises 551

BIBLIOGRAPHY 555

INDEX 565

PREFACE

Imagine driving home in a fuel cell car with nothing but pure water dripping from the tailpipe. Imagine a laptop computer that runs for 30 hours on a single charge. Imagine a world where air pollution emissions are a fraction of that from present-day automobiles and power plants. These dreams motivate today’s fuel cell research. While some dreams (like cities chock-full of ultra-low-emission fuel cell cars) may be distant, others (like a 30-hour fuel cell laptop) may be closer than you think.

By taking fuel cells from the dream world to the real world, this book teaches you the science behind the technology. This book focuses on the questions “how” and “why.” Inside you will find straightforward descriptions of how fuel cells work, why they offer the potential for high efficiency, and how their unique advantages can best be used. Emphasis is placed on the fundamental scientific principles that govern fuel cell operation. These principles remain constant and universally applicable, regardless of fuel cell type or technology.

Following this philosophy, the first part, “Fuel Cell Principles,” is devoted to basic fuel cell physics. Illustrated diagrams, examples, text boxes, and homework questions are all designed to impart a unified, intuitive understanding of fuel cells. Of course, no treatment of fuel cells is complete without at least a brief discussion of the practical aspects of fuel cell technology. This is the aim of the second part of the book, “Fuel Cell Technology.” Informative diagrams, tables, and examples provide an engaging review of the major fuel cell technologies. In this half of the book, you will learn how to select the right fuel cell for a given application and how to design a complete system. Finally, you will learn how to assess the potential environmental impact of fuel cell technology.

xi

xii PREFACE

Comments or questions? Suggestions for improving the book? Found a typo, think our explanations could be improved, want to make a suggestion about other important con- cepts to discuss, or have we got it all wrong? Please send us your feedback by emailing us at fcf3@yahoogroups.com. We will take your suggestions into consideration for the next edition. Our website http://groups.yahoo.com/group/fcf3 posts these discussions, fliers for the book, and additional educational materials. Thank you.

ACKNOWLEDGMENTS

The authors would like to thank their friends and colleagues at Stanford University and the former Rapid Prototyping Laboratory (RPL), now the Nano-Prototyping Laboratory (NPL), for their support, critiques, comments, and enthusiasm.Without you, this text would not have been written! The beautiful figures and illustrations featured in this textbook were crafted primarily by Marily Mallison, with additional illustrations by Dr. Michael Sanders—their artistic touch is greatly appreciated!

The authors would like to thank the Deans of the Stanford School of Engineering, Jim Plummer and Channing Robertson, and John Bravman, Vice Provost Undergraduate Educa- tion, for the support that made this book possible.Wewould also like to acknowledgeHonda R&D, its representatives J. Araki, T. Kawanabe, Y. Fujisawa, Y. Kawaguchi, Y. Higuchi, T. Kubota, N. Kuriyama, Y. Saito, J. Sasahara, and H. Tsuru, and Stanford’s Global Climate and Energy Project (GCEP) community for creating an atmosphere conducive to studying and researching new forms of power generation. All members of RPL/NPL are recog- nized for stimulating discussions. Special thanks to Dr. Tim Holme for his innumerable contributions, including his careful review of the text, integration work, nomenclature and equation summaries, and the appendixes. Thanks also to Professor Rojana Pornprasertsuk, who developed the wonderful quantum simulation images for Chapter 3 and Appendix D. The authors are grateful to Professor Yong-il Park for his help in the literature survey of Chapter 9 and Rami Elkhatib for his significant contributions in writing this section. Profes- sor Juliet Risner deserves gratitude for her beautiful editing job, and Professor Hong Huang deserves thanks for content contribution. Dr. Jeremy Cheng, Dr. Kevin Crabb, Professor Turgut Gur, Shannon Miller, Masafumi Nakamura, and A. J. Simon also provided signifi- cant editorial advice. Thanks to Dr. Young-Seok Jee, Dr. Daeheung Lee, Dr. Yeageun Lee,

xiii

xiv ACKNOWLEDGMENTS

Dr. Wonjong Yu, and Dr. Yusung Kim for their contributions to Chapters 6 and 13. Spe- cial thanks to Rusty Powell and Derick Reimanis for their careful editing contributions to the second edition. Finally, thanks to colleagues at the Colorado School of Mines (CSM), including Bob Kee and Neal Sullivan for their helpful discussions and for a decade’s worth of students at CSM for catching typos and identifying areas in need for clarification for this third edition.

We would like to extend our gratitude to Professor Stephen H. Schneider, Professor Terry Root, Dr. Michael Mastrandrea, Mrs. Patricia Mastrandrea, Dr. Gerard Ketafani, and Dr. Jonathan Koomey. We would also like to thank the technical research staff within the U.S. Department of Energy (DOE) complex, including researchers at DOE national lab- oratories [Sandia National Laboratories (SNL), Lawrence Berkeley National Laboratory (LBNL), Argonne National Laboratory (ANL), the National Renewable Energy Laboratory (NREL), and Lawrence Livermore National Laboratory (LLNL), among others]. We would also like to thank research participants within the International Energy Agency (IEA) Sta- tionary Fuel Cell Annex, the American Institute of Chemical Engineers (AICHE) Transport and Energy Processes Division (TEP), and the National Academy of Engineering (NAE) Frontiers of Engineering (FOE) program.

For intellectually stimulating discussions on energy system design, we also would like to thank Dr. Salvador Aceves (LLNL), Dr. Katherine Ayers (ProtonOnsite Inc.), Professor Nigel Brandon (Imperial College London), Mr. Tom Brown (California State University Northridge), Dr. Viviana Cigolotti [Energy and Sustainable Economic Development (ENEA)], Professor Peter Dobson [University of Oxford (Oxon)], Dr. Elango Elangovan (Ceramatec Inc.), Professor Ferhal Erhun, Dr. Angelo Esposito (European Institute for Energy Research), Dr. Hossein Ghezel-Ayagh [FuelCell Energy Inc. (FCE)], Dr. Lorenz Gubler [Paul Scherrer Institut (PSI)], Dr. Monjid Hamdan (Giner Inc.), Dr. Joseph J. Hartvigsen (Ceramatec Inc.), Professor Michael Hickner (The Pennsylvania State University), Professor Ben Hobbs (Johns Hopkins University), Professor Daniel M. Kammen [University of California at Berkeley (UCB)], Professor Jon Koomey, Dr. Scott Larsen (New York State Energy Research and Development Authority), Mr. Bruce Lin (EnerVault Inc.), Dr. Ludwig Lipp (FCE), Dr. Bernard Liu (National Cheng Kung University), Professor V. K. Mathur (University of New Hampshire), Dr. Marianne Mintz (ANL), Professor Catherine Mitchell (University of Exeter), Dr. Cortney Mittelsteadt (Giner Inc.), Dr. Yasunobu Mizutani (ToHo Gas Co. Ltd.), John Molburg (Argonne National Laboratory), Dr. Angelo Moreno [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA)], Professor Vincenzo Mulone (University of Rome Tor Vergata), Dr. Jim O’Brien (Idaho National Laboratory), Professor Joan Ogden (University of California at Davis), Dr. Pinakin Patel (FCE), Dr. Randy Petri (Versa Power Inc.), Professor Bruno Pollet (University of Ulster), Dr. Peter Rieke [Pacific Northwest National Laboratory (PNNL)], Dr. Subhash C. Singhal (PNNL), Professor Colin Snowdon (Oxon), Professor Robert Socolow (Princeton University), Mr. Keith Spitznagel (KAS Energy Services LLC), Professor Robert Steinberger-Wilckens (University of Birmingham), Dr. Jeffry Stevenson (PNNL), Professor Richard Stone (Oxon), Professor Etim Ubong (Kettering University), Professor Eric D. Wachsman (University of Maryland), Professor Xia Wang (Oakland University), and Professor Yingru Zhao (Xiamen University).

ACKNOWLEDGMENTS xv

Fritz B. Prinz wants to thank his wife, Gertrud, and his children, Marie-Helene and Benedikt, for their love, support, and patience.

Whitney G. Colella would like to thank her friends and family, especially the Bakers, Birchards, Chens, Colellas, Culvers, Efthimiades, Hoffmans, Jaquintas, Judges, Louies, Mavrovitis, Omlands, Pandolfis, Panwalkers, Qualtieris, Scales, Smiths, Spielers, Tepers, Thananarts, Tragers, Wasleys, and Wegmans.

Suk-Won Cha wishes to thank Unjung, William, and Sophia for their constant support, love, and understanding.

Ryan O’Hayre sends his thanks and gratitude to Lisa for her friendship, encouragement, confidence, support, and love. Thanks also to Kendra, Arthur, Morgan, little Anna, and little Robert. Ryan has always wanted to write a book … probably something about dragons and adventure. Well, things have a funny way of working out, and although he ended up writing about fuel cells, he had to put the dragons in somewhere.…

Order now and get 10% discount on all orders above $50 now!!The professional are ready and willing handle your assignment.

ORDER NOW »»