Computer Science

ATA SCIENCE/.DS_Store

__MACOSX/DATA SCIENCE/._.DS_Store

DATA SCIENCE/venv/MNIST_data/t10k-images-idx3-ubyte.gz

DATA SCIENCE/venv/MNIST_data/t10k-images-idx3-ubyte

DATA SCIENCE/venv/MNIST_data/train-images-idx3-ubyte.gz

DATA SCIENCE/venv/MNIST_data/train-images-idx3-ubyte

DATA SCIENCE/venv/MNIST_data/train-labels-idx1-ubyte.gz

DATA SCIENCE/venv/MNIST_data/train-labels-idx1-ubyte

DATA SCIENCE/venv/MNIST_data/t10k-labels-idx1-ubyte.gz

DATA SCIENCE/venv/MNIST_data/t10k-labels-idx1-ubyte

DATA SCIENCE/venv/.DS_Store

__MACOSX/DATA SCIENCE/venv/._.DS_Store

DATA SCIENCE/venv/TEST/.DS_Store

__MACOSX/DATA SCIENCE/venv/TEST/._.DS_Store

DATA SCIENCE/venv/TEST/8.png

DATA SCIENCE/venv/TEST/9.png

DATA SCIENCE/venv/TEST/4.png

DATA SCIENCE/venv/TEST/5.png

DATA SCIENCE/venv/TEST/7.png

__MACOSX/DATA SCIENCE/venv/TEST/._7.png

DATA SCIENCE/venv/TEST/6.png

DATA SCIENCE/venv/TEST/2.png

__MACOSX/DATA SCIENCE/venv/TEST/._2.png

DATA SCIENCE/venv/TEST/3.png

DATA SCIENCE/venv/TEST/1.png

DATA SCIENCE/venv/8.png

__MACOSX/DATA SCIENCE/venv/._8.png

DATA SCIENCE/venv/bin/pip3.7

#!/Users/lenoxye/PycharmProjects/MIT/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: ‘pip==19.0.3′,’console_scripts’,’pip3.7′ __requires__ = ‘pip==19.0.3’ import re import sys from pkg_resources import load_entry_point if __name__ == ‘__main__’: sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$’, ”, sys.argv[0]) sys.exit( load_entry_point(‘pip==19.0.3’, ‘console_scripts’, ‘pip3.7’)() )

DATA SCIENCE/venv/bin/python3

DATA SCIENCE/venv/bin/easy_install

#!/Users/lenoxye/PycharmProjects/MIT/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: ‘setuptools==40.8.0′,’console_scripts’,’easy_install’ __requires__ = ‘setuptools==40.8.0’ import re import sys from pkg_resources import load_entry_point if __name__ == ‘__main__’: sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$’, ”, sys.argv[0]) sys.exit( load_entry_point(‘setuptools==40.8.0’, ‘console_scripts’, ‘easy_install’)() )

DATA SCIENCE/venv/bin/python

DATA SCIENCE/venv/bin/pip3

#!/Users/lenoxye/PycharmProjects/MIT/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: ‘pip==19.0.3′,’console_scripts’,’pip3′ __requires__ = ‘pip==19.0.3’ import re import sys from pkg_resources import load_entry_point if __name__ == ‘__main__’: sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$’, ”, sys.argv[0]) sys.exit( load_entry_point(‘pip==19.0.3’, ‘console_scripts’, ‘pip3’)() )

DATA SCIENCE/venv/bin/activate.fish

# This file must be used with “. bin/activate.fish” *from fish* (http://fishshell.org) # you cannot run it directly function deactivate -d “Exit virtualenv and return to normal shell environment” # reset old environment variables if test -n “$_OLD_VIRTUAL_PATH” set -gx PATH $_OLD_VIRTUAL_PATH set -e _OLD_VIRTUAL_PATH end if test -n “$_OLD_VIRTUAL_PYTHONHOME” set -gx PYTHONHOME $_OLD_VIRTUAL_PYTHONHOME set -e _OLD_VIRTUAL_PYTHONHOME end if test -n “$_OLD_FISH_PROMPT_OVERRIDE” functions -e fish_prompt set -e _OLD_FISH_PROMPT_OVERRIDE functions -c _old_fish_prompt fish_prompt functions -e _old_fish_prompt end set -e VIRTUAL_ENV if test “$argv[1]” != “nondestructive” # Self destruct! functions -e deactivate end end # unset irrelevant variables deactivate nondestructive set -gx VIRTUAL_ENV “/Users/lenoxye/PycharmProjects/MIT/venv” set -gx _OLD_VIRTUAL_PATH $PATH set -gx PATH “$VIRTUAL_ENV/bin” $PATH # unset PYTHONHOME if set if set -q PYTHONHOME set -gx _OLD_VIRTUAL_PYTHONHOME $PYTHONHOME set -e PYTHONHOME end if test -z “$VIRTUAL_ENV_DISABLE_PROMPT” # fish uses a function instead of an env var to generate the prompt. # save the current fish_prompt function as the function _old_fish_prompt functions -c fish_prompt _old_fish_prompt # with the original prompt function renamed, we can override with our own. function fish_prompt # Save the return status of the last command set -l old_status $status # Prompt override? if test -n “(venv) ” printf “%s%s” “(venv) ” (set_color normal) else # …Otherwise, prepend env set -l _checkbase (basename “$VIRTUAL_ENV”) if test $_checkbase = “__” # special case for Aspen magic directories # see http://www.zetadev.com/software/aspen/ printf “%s[%s]%s ” (set_color -b blue white) (basename (dirname “$VIRTUAL_ENV”)) (set_color normal) else printf “%s(%s)%s” (set_color -b blue white) (basename “$VIRTUAL_ENV”) (set_color normal) end end # Restore the return status of the previous command. echo “exit $old_status” | . _old_fish_prompt end set -gx _OLD_FISH_PROMPT_OVERRIDE “$VIRTUAL_ENV” end

DATA SCIENCE/venv/bin/easy_install-3.7

#!/Users/lenoxye/PycharmProjects/MIT/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: ‘setuptools==40.8.0′,’console_scripts’,’easy_install-3.7′ __requires__ = ‘setuptools==40.8.0’ import re import sys from pkg_resources import load_entry_point if __name__ == ‘__main__’: sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$’, ”, sys.argv[0]) sys.exit( load_entry_point(‘setuptools==40.8.0’, ‘console_scripts’, ‘easy_install-3.7’)() )

DATA SCIENCE/venv/bin/python3.7

DATA SCIENCE/venv/bin/pip

#!/Users/lenoxye/PycharmProjects/MIT/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: ‘pip==19.0.3′,’console_scripts’,’pip’ __requires__ = ‘pip==19.0.3’ import re import sys from pkg_resources import load_entry_point if __name__ == ‘__main__’: sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$’, ”, sys.argv[0]) sys.exit( load_entry_point(‘pip==19.0.3’, ‘console_scripts’, ‘pip’)() )

DATA SCIENCE/venv/bin/activate

# This file must be used with “source bin/activate” *from bash* # you cannot run it directly deactivate () { # reset old environment variables if [ -n “${_OLD_VIRTUAL_PATH:-}” ] ; then PATH=”${_OLD_VIRTUAL_PATH:-}” export PATH unset _OLD_VIRTUAL_PATH fi if [ -n “${_OLD_VIRTUAL_PYTHONHOME:-}” ] ; then PYTHONHOME=”${_OLD_VIRTUAL_PYTHONHOME:-}” export PYTHONHOME unset _OLD_VIRTUAL_PYTHONHOME fi # This should detect bash and zsh, which have a hash command that must # be called to get it to forget past commands. Without forgetting # past commands the $PATH changes we made may not be respected if [ -n “${BASH:-}” -o -n “${ZSH_VERSION:-}” ] ; then hash -r fi if [ -n “${_OLD_VIRTUAL_PS1:-}” ] ; then PS1=”${_OLD_VIRTUAL_PS1:-}” export PS1 unset _OLD_VIRTUAL_PS1 fi unset VIRTUAL_ENV if [ ! “$1” = “nondestructive” ] ; then # Self destruct! unset -f deactivate fi } # unset irrelevant variables deactivate nondestructive VIRTUAL_ENV=”/Users/lenoxye/PycharmProjects/MIT/venv” export VIRTUAL_ENV _OLD_VIRTUAL_PATH=”$PATH” PATH=”$VIRTUAL_ENV/bin:$PATH” export PATH # unset PYTHONHOME if set # this will fail if PYTHONHOME is set to the empty string (which is bad anyway) # could use `if (set -u; : $PYTHONHOME) ;` in bash if [ -n “${PYTHONHOME:-}” ] ; then _OLD_VIRTUAL_PYTHONHOME=”${PYTHONHOME:-}” unset PYTHONHOME fi if [ -z “${VIRTUAL_ENV_DISABLE_PROMPT:-}” ] ; then _OLD_VIRTUAL_PS1=”${PS1:-}” if [ “x(venv) ” != x ] ; then PS1=”(venv) ${PS1:-}” else if [ “`basename \”$VIRTUAL_ENV\”`” = “__” ] ; then # special case for Aspen magic directories # see http://www.zetadev.com/software/aspen/ PS1=”[`basename \`dirname \”$VIRTUAL_ENV\”\“] $PS1″ else PS1=”(`basename \”$VIRTUAL_ENV\”`)$PS1″ fi fi export PS1 fi # This should detect bash and zsh, which have a hash command that must # be called to get it to forget past commands. Without forgetting # past commands the $PATH changes we made may not be respected if [ -n “${BASH:-}” -o -n “${ZSH_VERSION:-}” ] ; then hash -r fi

DATA SCIENCE/venv/bin/activate.csh

# This file must be used with “source bin/activate.csh” *from csh*. # You cannot run it directly. # Created by Davide Di Blasi <davidedb@gmail.com>. # Ported to Python 3.3 venv by Andrew Svetlov <andrew.svetlov@gmail.com> alias deactivate ‘test $?_OLD_VIRTUAL_PATH != 0 && setenv PATH “$_OLD_VIRTUAL_PATH” && unset _OLD_VIRTUAL_PATH; rehash; test $?_OLD_VIRTUAL_PROMPT != 0 && set prompt=”$_OLD_VIRTUAL_PROMPT” && unset _OLD_VIRTUAL_PROMPT; unsetenv VIRTUAL_ENV; test “\!:*” != “nondestructive” && unalias deactivate’ # Unset irrelevant variables. deactivate nondestructive setenv VIRTUAL_ENV “/Users/lenoxye/PycharmProjects/MIT/venv” set _OLD_VIRTUAL_PATH=”$PATH” setenv PATH “$VIRTUAL_ENV/bin:$PATH” set _OLD_VIRTUAL_PROMPT=”$prompt” if (! “$?VIRTUAL_ENV_DISABLE_PROMPT”) then if (“venv” != “”) then set env_name = “venv” else if (`basename “VIRTUAL_ENV”` == “__”) then # special case for Aspen magic directories # see http://www.zetadev.com/software/aspen/ set env_name = `basename \`dirname “$VIRTUAL_ENV”\“ else set env_name = `basename “$VIRTUAL_ENV”` endif endif set prompt = “[$env_name] $prompt” unset env_name endif alias pydoc python -m pydoc rehash

DATA SCIENCE/venv/Mnistdeep.py

from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf mnist = input_data.read_data_sets(‘MNIST_data’, one_hot=True) x = tf.placeholder(tf.float32, [None, 784]) y_ = tf.placeholder(tf.float32, [None, 10]) def weight_variable(shape): initial = tf.truncated_normal(shape,stddev = 0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1,shape = shape) return tf.Variable(initial) def conv2d(x,W): return tf.nn.conv2d(x, W, strides = [1,1,1,1], padding = ‘SAME’) def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding=’SAME’) W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) x_image = tf.reshape(x,[-1,28,28,1]) h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) W_fc1 = weight_variable([7 * 7 * 64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) keep_prob = tf.placeholder(“float”) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv)) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, “float”)) saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(20000): batch = mnist.train.next_batch(50) if i % 100 == 0: train_accuracy = accuracy.eval(feed_dict={ x: batch[0], y_: batch[1], keep_prob: 1.0}) print(‘step %d, training accuracy %g’ % (i, train_accuracy)) train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) saver.save(sess, ‘tmp/model.ckpt’) print(‘test accuracy %g’ % accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

DATA SCIENCE/venv/test1.py

from PIL import Image, ImageFilter import tensorflow as tf import matplotlib.pyplot as plt import numpy as np def image_prepare(image_path): img = Image.open(image_path) im = img.resize((28, 28), Image.ANTIALIAS) im = im.convert(‘L’) tv = list(im.getdata()) tva = [(255 – x) * 1.0 / 255.0 for x in tv] return tva image_path = input(‘Please enter the image path : ‘) result = image_prepare(image_path) x = tf.placeholder(tf.float32, [None, 784]) y_ = tf.placeholder(tf.float32, [None, 10]) def weight_variable(shape): initial = tf.truncated_normal(shape, stddev = 0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape = shape) return tf.Variable(initial) def conv2d(x, W): return tf.nn.conv2d(x, W, strides = [1,1,1,1], padding = “SAME”) def max_pool_2x2(x): return tf.nn.max_pool(x, ksize = [1,2,2,1], strides = [1,2,2,1], padding = “SAME”) W_conv1 = weight_variable([5,5,1,32]) b_conv1 = bias_variable([32]) x_image = tf.reshape(x, [-1,28,28,1]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1)+b_conv1) h_pool1 = max_pool_2x2(h_conv1) W_conv2 = weight_variable([5,5,32,64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_conv1, W_conv2)+b_conv2) h_pool2 = max_pool_2x2(h_conv2) W_fc1 = weight_variable([7*7*64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1)+b_fc1) keep_prob = tf.placeholder(“float”) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2)+b_fc2) cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv)) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) saver.restore(sess, “tmp/model.ckpt”) prediction = tf.argmax(y_conv, 1) predict = prediction.eval(feed_dict={x: [result], keep_prob: 1.0}, session=sess) print(‘recognize result:’) print(predict[0])

DATA SCIENCE/venv/pyvenv.cfg

home = /usr/local/bin include-system-site-packages = false version = 3.7.4

DATA SCIENCE/venv/test2.py

from PIL import Image, ImageFilter import tensorflow as tf import matplotlib.pyplot as plt import cv def imageprepare(): file_name=’TEST/1.png’ im = Image.open(file_name).convert(‘L’) im.save(“sample.png”) plt.imshow(im) plt.show() tv = list(im.getdata()) #get pixel values #normalize pixels to 0 and 1. 0 is pure white, 1 is pure black. tva = [ (255-x)*1.0/255.0 for x in tv] #print(tva) return tva “”” This function returns the predicted integer. The imput is the pixel values from the imageprepare() function. “”” # Define the model (same as when creating the model file) result=imageprepare() x = tf.placeholder(tf.float32, [None, 784]) W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding=’SAME’) def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=’SAME’) W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) x_image = tf.reshape(x, [-1,28,28,1]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) W_fc1 = weight_variable([7 * 7 * 64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) keep_prob = tf.placeholder(tf.float32) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) init_op = tf.initialize_all_variables() “”” Load the model2.ckpt file file is stored in the same directory as this python script is started Use the model to predict the integer. Integer is returend as list. Based on the documentatoin at https://www.tensorflow.org/versions/master/how_tos/variables/index.html “”” saver = tf.train.Saver() with tf.Session() as sess: sess.run(init_op) saver.restore(sess, “tmp/model.ckpt”) #print (“Model restored.”) prediction=tf.argmax(y_conv,1) predint=prediction.eval(feed_dict={x: [result],keep_prob: 1.0}, session=sess) print(h_conv2) print(‘recognize result:’) print(predint[0])

DATA SCIENCE/venv/123.png

__MACOSX/DATA SCIENCE/venv/._123.png

DATA SCIENCE/venv/sample.png

DATA SCIENCE/venv/lib/.DS_Store

__MACOSX/DATA SCIENCE/venv/lib/._.DS_Store

DATA SCIENCE/venv/lib/python3.7/site-packages/easy-install.pth

./setuptools-40.8.0-py3.7.egg ./pip-19.0.3-py3.7.egg

DATA SCIENCE/venv/lib/python3.7/site-packages/pip-19.0.3-py3.7.egg/EGG-INFO/PKG-INFO

Metadata-Version: 1.2 Name: pip Version: 19.0.3 Summary: The PyPA recommended tool for installing Python packages. Home-page: https://pip.pypa.io/ Author: The pip developers Author-email:¬†pypa-dev@groups.google.com License: MIT Description: pip – The Python Package Installer ================================== .. image:: https://img.shields.io/pypi/v/pip.svg :target: https://pypi.org/project/pip/ .. image:: https://readthedocs.org/projects/pip/badge/?version=latest :target: https://pip.pypa.io/en/latest pip is the `package installer`_ for Python. You can use pip to install packages from the `Python Package Index`_ and other indexes. Please take a look at our documentation for how to install and use pip: * `Installation`_ * `Usage`_ * `Release notes`_ If you find bugs, need help, or want to talk to the developers please use our mailing lists or chat rooms: * `Issue tracking`_ * `Discourse channel`_ * `User IRC`_ If you want to get involved head over to GitHub to get the source code and feel free to jump on the developer mailing lists and chat rooms: * `GitHub page`_ * `Dev mailing list`_ * `Dev IRC`_ Code of Conduct ————— Everyone interacting in the pip project’s codebases, issue trackers, chat rooms, and mailing lists is expected to follow the `PyPA Code of Conduct`_. .. _package installer: https://packaging.python.org/en/latest/current/ .. _Python Package Index: https://pypi.org .. _Installation: https://pip.pypa.io/en/stable/installing.html .. _Usage: https://pip.pypa.io/en/stable/ .. _Release notes: https://pip.pypa.io/en/stable/news.html .. _GitHub page: https://github.com/pypa/pip .. _Issue tracking: https://github.com/pypa/pip/issues .. _Discourse channel: https://discuss.python.org/c/packaging .. _Dev mailing list: https://groups.google.com/forum/#!forum/pypa-dev .. _User IRC: https://webchat.freenode.net/?channels=%23pypa .. _Dev IRC: https://webchat.freenode.net/?channels=%23pypa-dev .. _PyPA Code of Conduct: https://www.pypa.io/en/latest/code-of-conduct/ Keywords: distutils easy_install egg setuptools wheel virtualenv Platform: UNKNOWN Classifier: Development Status :: 5 – Production/Stable Classifier: Intended Audience :: Developers Classifier: License :: OSI Approved :: MIT License Classifier: Topic :: Software Development :: Build Tools Classifier: Programming Language :: Python Classifier: Programming Language :: Python :: 2 Classifier: Programming Language :: Python :: 2.7 Classifier: Programming Language :: Python :: 3 Classifier: Programming Language :: Python :: 3.4 Classifier: Programming Language :: Python :: 3.5 Classifier: Programming Language :: Python :: 3.6 Classifier: Programming Language :: Python :: 3.7 Classifier: Programming Language :: Python :: Implementation :: CPython Classifier: Programming Language :: Python :: Implementation :: PyPy Requires-Python: >=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*

DATA SCIENCE/venv/lib/python3.7/site-packages/pip-19.0.3-py3.7.egg/EGG-INFO/not-zip-safe

DATA SCIENCE/venv/lib/python3.7/site-packages/pip-19.0.3-py3.7.egg/EGG-INFO/SOURCES.txt

Order now and get 10% discount on all orders above $50 now!!The professional are ready and willing handle your assignment.

ORDER NOW »»